Translation of the StrictC Dialect

Michael Norrish
28 October 2020

Contents
1 Introduction 1
1.1 StrictC Subset Summary 2
2 Abstract Syntax 2
2.1 Regions 5
3 The Symbol Table 7
3.1 Functional Record Updatesin SML 7
4 Creation of the Hoare Environment State 8
4.1 Representing Values in Memory 9
4.2 Pointers e 10
4.3 Arrays . ..o 10
4.4 Cstruct Types o 11
5 Translating Expressions 11
5.1 Undefined Behaviour 14
A Concrete Syntax: Parsing and Lexing 15
A1 Lexing and typedef Names 15
A2 GCC __attribute__ Declarations 16

1 Introduction

This report describes the translation program that imports C source into a
running Isabelle/HOL process, making a series of Isabelle definitions in the
process, as well as discharging a number of (relatively minor) proof obligations
that arise along the way.

The source code for the translator is found in the directory c-parser. Source
files, e.g., file.ML, are found in this directory unless otherwise noted.

The translation expects its input to be a well-formed C source file. Such a
source file must additionally satisfy a number of other constraints, giving rise
to a subset of C that is here called “StrictC”. Files in StrictC may also include

special annotations intended only for consumption by Isabelle (and the human
code-verifier).

In fact, there are two important StrictC programs: the translation program,
and the analysis program. The analysis program is entirely independent of
Isabelle, and can be used to check that a source file conforms to the StrictC
subset. It also implements a number of analyses that can be performed on
source code. For example, it can output the input file’s call-graph, and can list
the globals that are read or modified in each function. The additional source-
files supporting the analysis program are found in

c-parser/standalone-parser

The rest of this report describes both the functionality provided by these
programs (focussing on the translator), how this functionality is implemented,
and where it is implemented. The aim is to give a picture of the systems’ design
in a way that should make future modification of the code possible.

1.1 StrictC Subset Summary

This is a brief list summarising the simplest restrictions imposed by the StrictC
subset.

e No goto statements.

e No fall-through cases in switch statements. Cases can be terminated with
continue and return, as well as break.

e Labels for switch statement cases must all appear at the syntactic level
immediately below the block statement that must appear below the switch
statement.

e No unions. (These are handled by a separate tool; see Cock [1].)

e No struct, enum or typedef declarations anywhere except at the top,
global, level.

2 Abstract Syntax

The core data types in the translator represent the input program. These ab-
stract syntax values are the product of parsing the concrete syntax (see Ap-
pendix A for the grammar used), and is the subsequent input to all further anal-
yses and translation. The abstract syntax declarations are given in Absyn.ML.
For example, the definition of the syntax type corresponding to C statements
is given in Figure 1. There are also definitions for C types, expressions, and
declarations in Absyn.ML.

The type statement is actually a statement_node wrapped inside a “re-
gion” (see Region.ML and Section 2.1 below), which provides information about

datatype statement_node =
Assign of expr * expr
| AssignFnCall of expr option * expr * expr list
| EmbFnCall of expr * expr * expr list
| Block of block_item list
| While of expr * string wrap option * statement
| Trap of trappable * statement
| Return of expr option
| ReturnFnCall of expr * expr list
| Break
| Continue
| IfStmt of expr * statement * statement
| Switch of expr * (expr option list * block_item list) list
| EmptyStmt
| Auxupd of string
| Spec of ((string * string) * statement list * string)
| AsmStmt of {volatilep : bool, asmblock : asmblock}
and statement = Stmt of statement_node Region.Wrap.t
and block_item =
BI_Stmt of statement
| BI_Decl of declaration wrap

Figure 1: The Abstract Syntax Data Type for C Statements

where the original concrete syntax originated. This is used for providing error
messages.

All strings in the statement declaration correspond to Isabelle terms (e.g.,
the loop invariant in the While case). These will be parsed as such later in the
translation process, but are just uninterpreted strings when the C parser fin-
ishes. Function calls can return their results into l-values, have the return value
ignored, or have the return value itself return-ed. The first option corresponds
to having the expr option argument be SOME e in the AssignFnCall construc-
tor, the second would have that parameter be NONE, and the last is handled by
the ReturnFnCall constructor.

Syntactically, these options correspond to writing

var = £(x,y);
or
£(x,y);
or
return f(x,y);
C99 Block Items Conforming to the C99 grammar, the input language al-

lows declarations at any point inside a block, not just in a sequence at the head
of the block. In other words, the following

{
x = £(2);
int y = x + 1;
while (x <y) { ... }
}

is legal in C99. This means that a block has to take a list of block_item values
as an argument, where a block_item is either a statement or a declaration.

Syntactic Sugar for Loops The abstract syntax has just one form of loop,
the While constructor. The optional string argument to While is used to rep-
resent any user-supplied invariant. Together with the Trap constructor, this is
used to implement all three forms of C loop. The translation follows the model
from Norrish’s PhD [3, p60]. It also supports for-loops with declarations in the
first position. This latter, for example,

for (int i = 3; i < 10; i++)

is a feature of C99.

Breaking from C, the grammar has the third component of the for loop form
be a restricted form of statement, rather than an expression. The parser syntax
only allows comma-separated increments (i.e., ++), decrements and assignments.

The Isabelle translation eventually compiles all loops to one underlying the
loop primitive in the VCG environment called While. This form does not handle
exceptional control-flow forms like break and continue. These are instead
handled by the Trap constructor, mapping to the VCG language’s TRY-CATCH
form.

2.1 Regions

The Region module implements a method for annotating arbitrary data types
with location information. This module has been taken from the MLton compiler
project (which has a BSD-style open source licence). It is used a great deal in the
system, and its use could probably be extended still further. Region information
is used to produce good error messages.

The basic type is that of the region which is essentially a pair of “source
positions” (which are in turn implemented in SourcePos.ML). One useful source
position is SourcePos.bogus, corresponding to “nowhere” (perhaps because
some syntax has been conjured out of nowhere and doesn’t really exist in a file).

Regions are then used to implement the concept of a “wrap” (SML type
Region.Wrap.t), a polymorphic data type. The file Absyn.ML declares the
following abbreviation:

type ’a wrap = ’a Region.Wrap.t

An ’a wrap (read “alpha wrap”) is an ’a value coupled with a region. The
important functions for manipulating wraps are

val wrap : ’a * SourcePos.t * SourcePos.t -> ’a wrap
val bogwrap : ’a -> ’a wrap

val left : ’a wrap -> SourcePos.t

val right : ’a wrap -> SourcePos.t

val node : ’a wrap -> ’a

val apnode : (’a -> ’b) -> ’a wrap -> ’b wrap

For example, the grammar code in StrictC.grm manipulates a number of values
of type string wrap. If an error relating to this value arises, both the string
and its position can be reported to the user.

Things become more complicated when the type to be wrapped is recur-
sive. The standard idiom in the project is illustrated with the definition of the
statement data type (shown in Figure 1). The constructors for values of the
type are actually given in an auxiliary type (statement_node), but the recursive
constructors take arguments of type statement. The type statement is then a
type that is mutually recursive with statement_node, and which has just one
constructor, Stmt.!

Because a statement is not a wrap, the project cannot directly call functions
like node on statement values. Instead, helper functions are declared:

11t would be nice if one could just declare statement to be an abbreviation of statement_-
node wrap, but SML doesn’t permit this. It must be a datatype itself, and thus must have at
least one constructor.

val sleft : statement -> SourcePos.t
val sright : statement -> SourcePos.t

val snode : statement -> statement_node
val swrap : SourcePos.t * SourcePos.t * statement_node ->
statement

When code wishes to pattern-match against the multiple possible forms a state-
ment s may have, the idiom is to write

case snode s of
EmptyStmt =>
| While(g,inv,body) => ...
| IfStmt(g,ts,es) =>
I

The strength of this idiom is that one always manipulates values of type statement.
In particular, if the case analysis above is to make recursive calls of its analysis
on sub-statements such as body, ts and es, these values are of the correct type
for this to be done immediately.

The expr (expression) type (home to constructors such as Deref, Var and
TypeCast) is set up in the same style, giving rise to functions eleft, eright,
enode, ewrap and ebogwrap.

The type of C types The type of C types is a ctype, with constructors
such as Void and Ptr. Though recursive, it doesn’t use the wrap idiom. On the
other hand, this type is polymorphic. The ’a parameter is instantiated with an
SML type that corresponds to the forms that give the size of arrays when they
are declared. This type parameter is instantiated with expr when the input file
is first parsed. In this way, a declaration like

unsigned char array[EnumConstl * sizeof (int*)];
can be handled. Thus, the VarDecl constructor of the declaration type

val VarDecl
expr ctype * string wrap * bool * initializer option ->
declaration

takes an expr ctype as its first parameter. Within subsequent phases of the
analysis and translation, it is much more convenient to work with values of type
int ctype, where the (constant) expression has been evaluated. For example,
the get_rettype function from program_analysis.ML, takes a csenv value (see
Section 3 below) and the name of a function, and returns the return type of the
function. The value returned is an int ctype. The conversion of an expr ctype
into an int ctype is done by the function Absyn.constify_abtype.

3 The Symbol Table

All of the work done in analysis and translation of StrictC revolves around
the information stored in two important data structures implemented in the
module program-analysis.ML. The first of these is the var_info type. This
stores information about individual variables. The second type, csenv (“C state
environment”), stores information about the program as a whole, including its
collection of variables, but also recording details such as where variables are
read and modified, and the program’s call-graph structure.

The var_info type stores information about declared identifiers living in
the name-space that encompasses normal objects, functions and enumeration
constants. In addition to the type of the variable (e.g., int, char * etc.), the
var_info also includes information about where the variable was declared in
terms of program locations, and also in terms of scope (it might be global, or
declared local to a particular function).

The csenv type accumulates its information about the program by perform-
ing traversals of the abstract syntax tree. The StrictC translator makes no
effort to be a one-pass compiler, but the number of traversals is no greater
than three, and will probably be reduced in future versions of the implemen-
tation. These traversals are performed after the parser has constructed all of
the tree. There are also places in this analysis where the translator assumes
that it has seen the whole program. In particular, the translator cannot be
used to translate translation units that are to be separately compiled. It must
be presented with a concatenation of the complete sources.

The bulk of the API for manipulating values of type csenv is concerned
with pulling information out of the symbol table. For example, it is possible to
calculate the type of a C expression with the function

val cse_typing : csenv -> expr -> int ctype

In addition, program-analysis.ML contains the one entry-point for taking
a sequence of external declarations (once parsed) and creating a csenv value:

val process_decls :
Absyn.ext_decl list ->
((Absyn.ext_decl list * Absyn.statement list) * csenv)

The return type includes a modified version of the syntax that was provided
as input, a list of the initialising assignments for the global variables, and the
csenv value.

3.1 Functional Record Updates in SML

The code in program-analysis.ML uses a powerful, but cryptic SML idiom that
makes it easy to define SML records along with functions for updating their
fields. Done naively, writing code to do this represents a quadratic amount of
work for the programmer. Put another way, the naive approach requires O(n)

much typing whenever a field is added to or removed from a record definition
of n fields.
The cryptic technique is fully described at

http://mlton.org/FunctionalRecordUpdate

and allows the addition or deletion of a field to be done with O(1) much typing.
Supporting code is in FunctionalRecordUpdate.ML.

The cryptic code is isolated within program-analysis.ML, where it is used
to define update functions that are subsequently used exclusively. In general,
when one of the two types has a field £1d of type 7, then there will typically be
a function {cse|vi}_fupd_fld defined, with type

(tr — 7) = red — red

where rcd is either var_info or csenv. Such functions can be used to update
the fields of a record: the user provides a function that is given the old value of
the field, and which returns the new value.

4 Creation of the Hoare Environment State

The major oddity about Norbert Schirmer’s Hoare environment, into which
we are translating our programs, is that all local variables, including function
parameters, have to be part of the “global state”. This state must be declared
before any functions can be translated, because a function becomes an Isabelle
definition (conceptually at least) that operates over that state space.

Slightly simplifying, the state space is an Isabelle type that is a record with
fields for every local and global variable. Each field has a type (Isabelle/HOL
is a typed logic after all), which means that all local variables of the same
name in the same StrictC translation unit must have the same type. This is
rather an arbitrary requirement, but easy both to enforce and to comply with.
Thankfully, signed and unsigned variants of the same underlying type (such as
signed short and unsigned short) are given the same Isabelle/HOL type, so
there is a little leeway. Nonetheless, if i is of type int in one function, it can
not be of type char in another.?

The arrangement of global and local variables is actually slightly compli-
cated. In essence, the state-space is set up to look like:

statespace = record
globals :: global_var_type
local_varl :: lvarl_type
local_var2 :: lvar2_type

local_varn :: lvarn_type

2If this is attempted, the system will “munge” one of the variables so that it has a different
name when translated into Isabelle. The “munged” name is stored in the variable’s var_info
record.

where the field globals is of a custom record type global_var_type that in
turn contains all of the global variables. In addition to the user program’s own
globals, the translation process adds two extra global variables of its own. These
variables are used for handling “exceptional exits” (such as those caused by the
break, continue and return statements), and for modelling the global heap.
The exact names of these variables is not important, here we will refer to them
as global_exn_var, and global_heap.

These two special variables are part of global_var_type and so must have
Isabelle types themselves. The type of global_exn_var is the enumerated type
c_exntype, defined in the Isabelle theory CProof to have three possible values,
Break, Return and Continue. The type of the global heap global_heap field
is a product of underlying heap contents (a map of type addr — word8) and
a special-purpose data type to store type information about the heap memory
(see Harvey Tuch’s PhD thesis [4] for more on this).

4.1 Representing Values in Memory

There is one important requirement that must be met by all object types that
occur in C programs: they must be representable in memory. Alternatively, it
must be possible to encode values of the types in a program as sequences of
bytes, and to then decode those same bytes back into the original values. One
approach to modelling this fundamental requirement might be to have Isabelle
functions that manipulated only lists of bytes. Working at the level of this
untyped, and very concrete, view of the program state would be an extremely
poor state of affairs (the C programmer would have a more abstract view of the
program than the verifier).

Our approach is to use Isabelle type-classes to encode the fact that an Isabelle
type can be represented in a consistent amount of “C memory”. When an
Isabelle type ’a is in the class mem_type?®, it supports functions

to_bytes i "a:i:mem_type => byte list"
from_bytes :: "byte list => ’a::mem_type"

as well as a number of other supporting functions that record details like the
fields that occur in compound struct types, and the (constant) length of the
byte-lists that encode the values in the type.

All of the atomic types manipulated by our programs are fixed-width words
(e.g., 32 bit words for integers). It is easy to demonstrate that these types are
indeed in the mem_type class. In particular, we do not pretend that programs
manipulate infinite precision integers, and then worry about whether or not
these integers can be pushed into and pulled out of memory. All of the arith-
metic performed by the programs we verify is done at fixed widths, respecting
the underlying machine’s operations. Additionally, using the techniques from
Section 5.1, we trap the undefined behaviour caused by overflow on signed val-
ues.

3See umm_heap/CTypes . thy.

4.2 Pointers

Pointers are always represented as words of a particular size (regardless of type
being pointed to). This is not required by the C standard, which only requires
pointers to void be capable of storing all other non-function pointer values,
and that all function pointer values be inter-convertible. Again, our decision to
specialise on particular, and reasonable, target architectures makes life simpler.

Pointers retain type information by using “phantom” type variables. The
Isabelle declaration is

datatype ’a ptr = Ptr addr

Then, if the C program under analysis calls for a variable of type char *, the
Isabelle environment will include a variable of Isabelle type byte ptr. In this
way our pointers are typed, even if their underlying encoding makes it trivial
to view a pointer to one type as a pointer to another type.

Because the underlying representation is always the same, all pointer types
are proved to be in the class mem_type once and for all (in theory CTypes).
Pointers to void are represented as values in the Isabelle type unit Ptr, where
unit is the standard singleton type. The unit type is not shown to be in the
class mem_type.

4.3 Arrays

C arrays are lists of values of fixed length. A faithful representation of this type
requires a novel Isabelle type. We build on Anthony Fox’s implementation of
John Harrison’s “finite Cartesian products” idea [2]. Syntactic trickery within
Isabelle allows us to write types like

nat [10]

which is an array of 10 natural numbers. There are operators for updating and
indexing into arrays. Note that the type 10 that appears above is an Isabelle
type, not a term.

If type 7 is a mem_type, then an array of 7 values will also be a mem_type,
as long as the size of the array is not so large that the array would not fit into
memory. This condition is discharged as the StrictC program is translated.

For technical reasons due to the implementation of type classes in Isabelle,
we need to fix separate limits, ahead of time, on the number of elements in an
array and the size of each element. Currently, for 32-bit ARM, our model fixes
a maximum of:

e 213 (8192) elements in each array; and

e 29 bytes (512 KiB) in each array element
For x86-64, the limits are:

e 220 (1048576) elements in each array; and

10

struct listnode { struct node2;

int node_data; struct nodel {
struct listnode *next; struct node2 *data;
}; struct nodel *next, *prev;

int someflag;
};
struct node2 {
struct nodel *owner;
char stringdatal[100];
};

Figure 2: Examples of Recursive struct Declarations Accepted in StrictC

e 220 hytes (64 MiB) in each array element

One would prefer to be able to multiply the size of the element type by the
number of the elements, but the type system does not permit this (for good
technical reasons).

4.4 C struct Types

From the point of view of the translation into Isabelle, struct types do not
pose any great conceptual difficulties. A struct type is clearly very similar to
an Isabelle record, which in turn is conceptually the same as a tuple. The first
complication that arises is that Isabelle tuples can not be recursive, whereas C
struct types are often recursive (as when implementing linked structures in the
heap).

This required the implementation of an alternative record definition package,
allowing (possibly multiple) recursive types. This then allows Isabelle types to
be defined that correspond to C declarations such as those shown in Figure 2.

Confirming that a struct type really is representable in memory, requires
the definition of functions for converting Isabelle records into lists of bytes and
vice versa. The size of the converted value must also be checked to be no
bigger than the size of memory. Both of these actions require knowledge of how
the fields of the struct are laid out in memory, which is in turn a function
of the padding that can be inserted between the fields. Such calculations are
architecture dependent.

5 Translating Expressions

Expression translation is implemented in expression_translation.ML.

Fundamental Concepts StrictC expressions are essentially a subset of C ex-
pressions, and are fairly easy to translate to corresponding Isabelle expressions
that manipulate Isabelle-encoded values. There are two fundamental concepts

11

datatype expr_info =

EI of {lval : (term -> term -> term) option,
addr : (term -> term) option,
rval : term -> term,
cty : int ctype,

ibool : bool,

lguard : (term -> term * term) list,
guard : (term -> term * term) list,
left : SourcePos.t,

right : SourcePos.t }

Figure 3: The expr_info type, into which C expressions are translated inter-
nally.

to grasp of expression translation. First, when being evaluated (“read to deter-
mine a value”) a C expression of type 7 becomes an Isabelle expression of type
statespace — [7], where [7] is the translated, Isabelle version of C type 7.

This must be done to make sense of expressions that read memory: an
expression such as s.arrayf1d[3] only has a specific value in the context of a
specific state of memory. This use of a “lifted” function space to represent the
expression is a standard technique in denotational semantics. In the example
given, the value of the expression is a function that looks at the statespace to
determine what data is stored at variable s. As the statespace evolves, the value
returned from this function changes, but the function’s value is the same.

Expressions do not just determine values however, they can also denote an
[-value, something denoting a “place in memory” that is to be updated. This
is done when an address is taken, or when an assignment is to be performed.
In a simple language, 1-values might only be variable names, but C allows for
complicated expressions on both sides of an assignment. The example above
(s.arrayf1d[3]) might just as well be assigned to as read. So, the l-value of
an expression e that has type 7 will be an Isabelle value of type statespace —
T — statespace, a function that takes a new value and a statespace to change,
and returns the updated statespace.

Not all expressions are l-values (the expression 3 is not, for example), so
the translation of any one expression can return one or two different values, an
“r-value” as well as an optional l-value.

In addition, because of the way the translation does not put local variables
into memory, the translation provides another separate optional value, that of
the expression’s address. If everything did live in memory, all l-values would
have addresses, and one could dispense with the separate calculation of 1-values.
Thus the first three lines of Figure 3.

The SML types given to the lval, addr and rval fields in the declaration
of expr_info are themselves function spaces at the SML level. These function
spaces manipulate values of SML type term. The way in which typing at the C

12

level is reflected at the Isabelle level is mainly hidden at the SML level, where
the programmer just manipulates terms (the Isabelle types are internal to those
values).

However, the function spaces can be made visible at the SML level. This is
done mainly to reduce the number of S-redexes that would otherwise be created
in the resulting term. For example, translating the C expression x + 3 will first
create r-values

[x] = (ho.x(0))
3] = (A\o.3)

where the application of the x function to a statespace o pulls out the value of
variable x in o.
When translating an expression e; + e2, one naturally creates the value

Ao. [e1] (o) + [e2] (o)

If this was done within Isabelle term values, the result would be a term full of
expressions of the form (Av. M)N. By lifting the Isabelle A to the SML level,
only one abstraction need to be created, at the very top-level in the translation.
Thus, the translation of the addition becomes the SML expression

(fn s => mk_plus (rval_of el s) (rval_of e2 s))

where rval_of returns the rval field of an expr_info and the [-reduction
happens within SML.

The fourth line of the record in expr_info values stores the type of the
expression, something that informs the translation of many different C expres-
sions. For example, additions are not as simple as just presented because of the
possibility that one of the arguments might be a pointer. The left and right
fields of the expr_info record store the source-code position of the original
expression. The two guard fields are explained below in Section 5.1.

The ibool field of the expr_info records whether or not the term being
generated in the r-value is of Isabelle’s boolean type. This is done so that
translation can avoid some conversions between Isabelle words and booleans.
For example, if the expression being translated is x < 6 && y > 10, the result-
ing Isabelle term will include a use of the two comparison operators on words.
Strictly, one should then turn the boolean results of these operators into either a
one or zero. But, as these results are then combined with boolean conjunction,
the values will immediately be converted back into booleans.

Of course, in an expression such as x && x->f1d > 6, the first operand to
the conjunction does not have Isabelle boolean type, and will be converted to
a boolean value by comparing it with the null pointer. (In fact, this particular
example causes a more complicated translation effect to occur; see Section 5.1
below on undefined behaviour.) Dually, if the code puts a boolean value into
memory, the translation has to make sure that the Isabelle term has the appro-
priate word type once more. There are two functions used here:

13

mk_isabool : expr_info -> expr_info
strip_kb : expr_info -> expr_info

The function mk_isabool produces an expr_info value that does have Isabelle
boolean type (it will be the identity function on an r-value that is already known
to be boolean). The function strip_kb reverses this, turning an Isabelle boolean
into an Isabelle word if necessary.

5.1 Undefined Behaviour

There are three classes of under-specification in the C standard. Those classed
as implementation defined are behaviours or values that are supposed to be
fixed and documented by particular implementations. For example, the number
of bits in an int (a number that must be at least 16), is a fixed value that
implementations are allowed to choose themselves. Because StrictC targets a
particular architecture, most implementation-defined aspects of C can be “baked
into” the translation. (The design attempts to have the translation sources
be easy to modify to account for different architectures; see for example the
ImplementationNumbers structure in each of the TargetNumbers.ML files.)

The second class of under-specification comprises unspecified behaviours.
The most important of these is the order of evaluation of arguments to operators
and function calls. Therefore, one should avoid writing code that depends on
unspecified evaluation order. Otherwise, the compiled executable might have
different semantics compared to the Simpl specification that we generate. For
example:

int x = £O + gO;

where f and g both have side effects, is currently allowed but should be avoided.
In the future, we plan to forbid or restrict programs that may have unspecified
evaluation order. The standalone analysis tool can check for this problem using
the ——embedded_fncalls option.

The third class of under-specification is undefined behaviour. In essence,
undefined behaviours are runtime errors (such as dereferencing a null pointer).
They are undefined because the standard does not require the implementation
to catch them, or to realise that they have occurred. Rather, if an undefined
behaviour occurs, the user can no longer rely on their program to do anything
sensible. In effect, implementations are given licence to blunder on however
they like when an undefined behaviour occurs.

Thus, it is critical that the C code we verify never exhibits any undefined be-
haviours. We do this with a feature of the Hoare environment called the guard.
A guard is a boolean condition g attached to a statement s, with the combina-
tion written ¢ — s. If the guard g is true when the combined statement is to
be executed, then s is allowed to execute. If it is false, the underlying seman-
tics defines the result to be a “fault”. When a program faults, nothing more
can happen, so it has effectively aborted. Verifying a program with guarded
statements thus requires proofs that the guards are always true.

14

Most guards arise in expressions, and the translation process accumulates
these in one top-level guard at the statement level. For example, in the state-
ment

X = *p >> i

there will be four guards attached to the statement that will need to be dis-
charged: that p is not null, that *p is not negative, that i is not negative, and
that i is less than 32.

One elegant feature of guards in the Hoare environment is that they can
be selectively disabled for the purposes of verification. For example, the C
standard’s requirement that right shift operations might not be performed on
negative numbers (that it results in undefined behaviour) is too strict, given a
particular C compiler and target architecture. In this situation, it is possible
to prove Hoare-triples where that particular guard is not used, so that the
semantics of g — s is simply that of s.

A Concrete Syntax: Parsing and Lexing

The grammar for StrictC is given in the file StrictC.grm, which is given as
input to the standard tool mlyacc. The format of an mlyacc file looks quite
similar to the format accepted by yacc. A typical grammar rule is

init_declarator_list
init_declarator
([init_declarator])
init_declarator YCOMMA init_declarator_list
(init_declarator :: init_declarator_list)

where a non-terminal appears before a colon, and multiple possible right-hand
sides are separated by the pipe or vertical bar character. The code for a produc-
tion appears in parentheses after each right-hand-side. The code’s convention
is to have token names (e.g., YCOMMA above) be upper-case.

Apart from the changes that turn assignment expressions into statements,
the grammar for StrictC attempts to be as close as possible to the grammar of
the C standard. In general, the names for non-terminals in StrictC.grm are
taken from the standard, so it should be fairly clear how the standard’s grammar
has been mapped into StrictC.grm.

A.1 Lexing and typedef Names

The standard problem in lexing and parsing C is that the grammar is ambiguous:
the non-terminal typedef-name is defined to simply be the same as an identifier.
When the parser encounters

x * £(y);

15

it can’t know if this is meant to be a multiplication of variable x by a function
call expression, or whether it is the (prototype) declaration of a function called
f taking an argument of type y and returning a value of type x.

To resolve this, the lexer must be able to classify identifier tokens as normal
identifiers or typedef-names. The StrictC translator’s approach to this problem
is not typical, because of the strange way in which mlyacc combines handling
of side effects with its error correction. Normally, one would have some sort of
updatable symbol table that the parser would write to when it encountered a
typedef declaration. The lexer would read from the same table as it encountered
identifiers, allowing appropriate categorisation.

The approach taken in the StrictC translator is to have the lexer do all of the
work, without reference to the parser (see StrictC.lex). This is possible, but
is also convoluted, and involves many updatable variables that are internal to
the lexer. The basic idea is that when the lexer sees a typedef token, it switches
to the TDEF state. When an identifier is seen in this state, the identifier is added
to the list of typedef-names, and lexing can continue. The complications arrive
in declarations like

typedef struct s { int £f1d1; char £1d2; } s_t;

where the identifiers s, £1d1 and £1d2 have to be ignored, and s_t taken as
the new typedef-name. This requires the lexer to handle the matching brace
characters, and partly motivates the requirement that typedef declarations all
occur at the top-level (and not be nested).

A.2 GCC __attribute__ Declarations

The parser handles, but mostly ignores, various gcc-specific extensions, such as
__attribute__. These are tricky to parse (something admitted by the relevant
gce documentation): users are given almost unlimited liberty to put their __-
attribute__ strings anywhere within a declaration.

For example, these three
int f(int) __attribute__((__const__));

__attribute__((__const__)) int f(int);
int __attribute__((__const__)) f(int);

are all supposed to parse successfully (and have the same meaning). Making
this work is rather involved. Most attributes are ignored, but the standalone
analysis tool does check that const and pure attributes are reasonable, given
what it knows of how functions may modify and read the global state.

References

[1] David Cock. Bitfields and tagged unions in C: Verification through auto-
matic generation. In Bernhard Beckert and Gerwin Klein, editors, Proc, 5th

16

VERIF'Y, volume 372 of CEUR Workshop Proceedings, pages 44-55, Sydney,
Australia, August 2008.

John Harrison. A HOL theory of Euclidean space. In Joe Hurd and T. Mel-
ham, editors, Theorem Proving in Higher Order Logics, 18th International
Conference, volume 3603 of Lecture Notes in Computer Science, pages 114—
129. Springer, 2005.

Michael Norrish. C Formalised in HOL. PhD thesis, Computer Lab-
oratory, University of Cambridge, 1998. Also published as Techni-
cal Report 453, available from http://www.cl.cam.ac.uk/TechReports/
UCAM-CL-TR-453. pdf.

Harvey Tuch. Formal Memory Models for Verifying C' Systems Code. PhD
thesis, School of Computer Science and Engineering, University of NSW,
Sydney 2052, Australia, Aug 2008.

17

